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Abstract

A simplified calculus model to investigate on the transverse heat transport near the edges of a thermally isolated thermoacoustic stack in the
low acoustic Mach number regime is presented. The proposed methodology relies on the well-known results of the classical linear thermoacoustic
theory which are implemented into an energy balance calculus-scheme through a finite difference technique. Details of the time-averaged temper-
ature and heat flux density distributions along a pore cross-section of the stack are given. It is shown that a net heat exchange between the fluid and
the solid walls takes place only near the edges of the stack plates, at distances from the ends not exceeding the peak-to-peak particle displacement
amplitude. The structure of the mean temperature field within a stack plate is also investigated; this last results not uniform near its terminations
giving rise to a smaller temperature difference between the plate extremities than that predicted by the standard linear theory. This result, when
compared with experimental measurements available in literature, suggests that thermal effects localized at the stack edges may play an important
role as sources of the deviations found between linear theory predictions and experiments at low and moderate Mach numbers.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Nowadays the thermoacoustic technology has the poten-
tial to play a major role in the development of more efficient
energy conversion/generation systems sustainable in terms of
costs, fuel resource availability and environmental acceptabil-
ity. These potentialities derive from some inherent benefits
thermoacoustic engines exhibit compared to their traditional
counterparts (internal combustion engine, steam turbine, va-
por compression refrigerator, etc.) and that make them very
attractive for use in a variety of commercial and industrial appli-
cations. A thermoacoustic engine operates using non-polluting
working fluids, has very few (often zero) moving mechani-
cal parts, can utilize proportional control to adjust to shifting
temperature/heat-loads and is made by traditional low-cost ma-
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terials consisting basically of the following four components
(see Fig. 1):

(1) a gas filled plane-wave resonator;
(2) an electro-acoustic transducer (acoustic driver);
(3) a porous solid medium (regenerator/stack);
(4) a couple of heat exchangers facing both ends of the stack.

The principles of thermoacoustic heat transport are exhaus-
tively summarized, by the framework of the linear thermoa-
coustic theory, in Swift’s tutorial article [1].

In its most simple and widely studied arrangement, the stack
consists of an assembly of thin parallel plates aligned in the
direction x of the particle acoustic oscillation (axial or lon-
gitudinal direction) and spaced by no more than few thermal
penetration depths, δκ , the distance through which heat can dif-
fuse in an acoustic cycle. This element, defined as the “heart” of
the engine, gives place to the desired heat/sound energy conver-
sion, the so-called “thermoacoustic effect”. Detailed outlines
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Nomenclature

a speed of sound . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

A cross-sectional area . . . . . . . . . . . . . . . . . . . . . . . . m2

cP isobaric specific heat of the gas . . . . . . J kg−1 K−1

cs specific heat of the plate material . . . . . J kg−1 K−1

ė time-averaged energy flux density . . . . . . . . W m−2

f frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hz
fν spatially averaged thermoviscous function
h thermoviscous function
ḣ time-averaged enthalpy flux density . . . . . . W m−2

Ḣ total enthalpy flux in half a channel . . . . . . . . . . . W
i imaginary unit
k wave number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m−1

K thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

l half of the plate thickness . . . . . . . . . . . . . . . . . . . . m
Ls stack length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
M Mach number
n unit vector
P pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
Pr Prandtl number
q̇ time-averaged heat flux density . . . . . . . . . . W m−2

S surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
∇TE longitudinal temperature gradient for which

ḣx = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K m−1

u x-component of the acoustic particle
velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

U volume flow rate . . . . . . . . . . . . . . . . . . . . . . . m3 s−1

x axial coordinate (direction) . . . . . . . . . . . . . . . . . . . m
acoustic particle displacement . . . . . . . . . . . . . . . . m

xs mean distance of the stack from the centre of the
resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

y transverse coordinate (direction) perpendicular to
the plate surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

y0 half distance between two plates . . . . . . . . . . . . . . m

z transverse coordinate (direction) direction
perpendicular to the x–y plane . . . . . . . . . . . . . . . m

Greek symbols

δ penetration depth . . . . . . . . . . . . . . . . . . . . . . . . . . . m
�x computation mesh size along the x direction . . . m
�y computation mesh size along the y direction . . . m
�T temperature difference between the plate

extremities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
λ wavelength of the sound wave . . . . . . . . . . . . . . . . m
ξ generic acoustic variable
ρ density of the gas . . . . . . . . . . . . . . . . . . . . . . kg m−3

ω angular frequency of the sound wave . . . . . rad s−1

Ω blockage ratio

Subscripts

0 evaluated at the mean stack position
1 first order acoustic variable
A acoustic amplitude at a pressure antinode
E end
m mean, time averaged
max maximum value
P isobaric
res resonator
s solid, stack
x longitudinal
y transversal
α term “alpha” of the enthalpy flux
β term “beta” of the enthalpy flux
κ thermal
ν viscous

Superscripts

i nodal point index
j nodal point index
of the criteria generally applied to optimize the stack perfor-
mance can be found in [2,3]. Two heat exchangers (“hot” and
“cold” exchangers), placed in close proximity of both ends of
the stack, absolve to the task of either supplying or removing
heat from its edges thus enabling heat transfer with the external
world.

The coupling between the stack and the heat exchangers
is actually recognized as a fundamental problem in thermoa-
coustic engines design and a major challenge for the future
improvement of the overall engine’s performances. Optimal
design of thermoacoustic heat exchangers depends on the un-
derstanding of the thermo-fluid dynamic processes controlling
the heat transfer between the sound wave and the heat exchang-
ers at the heat exchanger–stack junctions. The starting point for
the solution of this problem is the analysis of the structure of
the time-averaged temperature, energy and flow fields near the
pore ends of the stack.
The conventional linear thermoacoustic theory [1], precludes
treatments of the gas–solid heat transfer mechanisms at the
plate edges of the stack. Its formulation, in fact, is based on the
simplifying assumption that the time-averaged temperature of
the gas, Tm, is constant over a cross section of a stack chan-
nel and the same as that of the adjacent solid surface, Tsm.
The only dependence allowed for both gas and plates time-
averaged temperatures is the one along the axial direction, so
precluding any net heat exchange between them. This hypothe-
sis evidently fails in proximity of the stack ends (or in the heat
exchangers) where net gas–solid heat transfer takes place as a
result of non-zero temperature gradients along the direction y

normal to the plate surfaces (transverse direction). Swift, for
example, analyzing the performance of a thermoacoustic prime
mover [4], measured significant time-averaged temperature dif-
ferences between the gas and cold heat-exchanger fins; at low
Mach numbers (M < 4%), these differences were observed to
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increase proportional to the acoustic pressure amplitude while
at higher M values the growth became faster. Other experimen-
tal evidences of non-constant temperature gradient in the stack
are given in [5–7].

Considerable theoretical research focused on the study of
the temperature and heat flux distributions inside a gas chan-
nel of thermally isolated parallel-plate stacks much shorter in
length than the acoustic wavelength. These simplified struc-
tures (for which no heat can be exchanged either transversely or
axially through the ends with the surroundings) lead to a sim-
pler mathematics compared to other stack geometries [8–10],
still retaining most of the physics of the problem. Numerical
methods were applied by Cao et al. [11] who integrated the
compressible two-dimensional Navier–Stokes equations to test
the effect of plate spacing and acoustic pressure on the gas–
solid heat exchange area. Worlikar et al. [12,13] used a low
Mach number model to analyze the steady-state temperature
stratification in short stacks. Ishikawa and Mee [14] also con-
sidered in their computations plate lengths short compared to
the particle displacement length. Recent developments can be
found in the work of Besnoin and Knio [15] and in that of Marx
and Blanc-Bennon [16] where the coupling between the stack
and the heat exchangers was investigated. Analytical methods
were applied by Mozurkewich [17,18], Gopinath et al. [19], Gu-
sev et al. [20,21] and Waxler [22]. Yet some aspects are still
not fully understood, even at low and moderate acoustic Mach
numbers (less than a few percent), such as the relative inci-
dence of non-linear acoustic effects, turbulence, thermal effects
and other local physical processes on the disagreement between
standard linear theory predictions and experiments [23,24].

To delve into the above phenomena, a simplified numeri-
cal model for describing time-average transverse heat transfer
near the edges of a thermally isolated thermoacoustic stack at
low Mach numbers is presented in this paper. The proposed
methodology, inspired by the approach proposed in [17], relies
on the well-known results of the classical linear thermoacoustic
theory, in the “short stack” approximation formulation, for the
main energy-transport variables. They are implemented into a
simple energy balance calculus-scheme through a finite differ-
ence technique. The basic assumption are (a) that the solutions
of the classical linear theory for the amplitude of the acoustic
temperature oscillation, T1, and associated enthalpy flux equa-
tion, are approximately valid near the pore ends and (b) that
thermal conduction is the unique mechanism of heat trans-
port along the transverse y direction at any distance from the
plate surfaces. The numerical results concerning the structure
of the two-dimensional temperature and energy-flux distribu-
tions both in a solid plate and in a gas channel of the stack are
presented. A comparison with the findings of numerical calcu-
lations and experimental measurements to be found in literature
is also proposed. Furthermore, the limitations of the model are
explained.

2. Formulation

For pate lengths sufficiently greater than the particle dis-
placement length, however respecting the short stack approx-
imation (see below), the solutions of the standard linear theory
for the energy-transport variables should hold precisely in the
central regions of the stack, where end effects are negligible.
We show as, in the cases in which these solution may be re-
tained (sufficiently) accurate also near the pore terminations,
they can be easily implemented in a simple calculus-scheme
to describe time-average transverse heat transfer at the stack
edges. The proposed methodology involves only energy bal-
ance and boundary conditions specific to the case-study.

To start with the explicit formulation of the calculus model
we observe that for problems characterized by a periodic time
dependence (like thermoacoustics), the time-averaged law of
conservation of energy for a compressible viscous fluid is ex-
pressed by the equation [25]:

∇ · ė = 0 (1)

Integrating this equation over a volume element bounded by a
closed surface S and applying the divergence theorem gives us∮
S

ė · n dS = 0 (2)

where n is the unit vector directed along the normal to the sur-
face element dS. Eqs. (1) and (2) state equivalently that the
time-averaged energy flux density, ė, is a conserved quantity.
In particular, Eq. (2) can be conveniently applied to whatever
sub-region traced in the gas to impose local energy balance.
To accomplish this, a finite difference technique may be used,
where the quantitative results of standard linear theory can be
considered for the components of the time-averaged energy flux
density along the directions of interest.

The thermoacoustic equation for the hydrodynamic energy
flux density along the x direction is derived in the simplified
case of a parallel-plate stack. The ratio of the plate spacing (and
of the plate thickness) to the width in the transverse direction is
taken to be very small (as in real cases) thus the energy flow
along the z direction (perpendicular to the x–y plane) is negli-
gible and the problem can be regarded as two-dimensional.

The conventional complex notation is adopted for the time-
dependent variables

ξ(t) = ξm + Re
{
ξ1e

iωt
}

(3)

where t is the time, i the imaginary unit, Re{ } signifies the real
part and where ξ1 is the first-order complex amplitude of the
variable ξ fluctuating with angular frequency ω about its mean
value ξm.

The time-averaged hydrodynamic energy flow in the gas
along the longitudinal direction x is the same as the time-
averaged hydrodynamic enthalpy flow ḣx [1]:

ḣx = ρmcP

ω

2π

2π/ω∫
0

T (t)u(t)dt = 1

2
ρmcP Re{T1ũ1} (4)

where ρm is the mean density of the gas, cP is the isobaric spe-
cific heat of the gas, T is the temperature, u is the x-component
of the acoustic particle velocity, tilde indicates complex con-
jugation and having assumed the fluid obeys to the ideal gas
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equation of state. To evaluate this quantity, explicit expressions
for the first-order complex amplitudes T1 and u1 inside the
stack are required. If the specific heat of the plate material, cs ,
is notably greater than cP , it results [1,26]:

T1 = 1

ρmcP

(1 − hκ)P1

− 1

ρmω2

dP1

dx

dTm

dx

[
(1 − hκ) − Pr(1 − hν)

(1 − Pr)

]
(5)

u1 = i

ωρm

dP1

dx
(1 − hν) (6)

where

hκ = cosh[(1 + i)y/δκ ]
cosh[(1 + i)y0/δκ ] , hν = cosh[(1 + i)y/δν]

cosh[(1 + i)y0/δν] (7)

P1 being the local amplitude of the dynamic pressure, Pr the
Prandtl number, y0 half distance between two plates, δν the vis-
cous penetration depth and where y = 0 is in the center of the
fluid gap.

A simple expression for the pressure derivative dP1/dx can
be derived (see [27]) if the stack satisfies the “short stack ap-
proximation” which can be synthesized as follows:

(a) the reduced acoustic wavelength, λ/2π , is much larger
than the stack length, Ls . This implies that the stack may be
retained to be acoustically non-intrusive so that pressure and ve-
locity may be approximated at the entrance of the stack with the
equations given by lossless acoustics that, for a half-wavelength
resonator, are:

P1 = PA sin kxs = P0 (8)

u1 = i
PA

ρma
coskxs = iu0 (9)

PA being the amplitude of the dynamic pressure at a pressure
antinode, k the wave number (k = 2π/λ), a the sound velocity
and xs the mean stack location calculated as the distance of
the stack from the centre of the resonator (in the short stack
approximation the stack entrance location can merge its mean
location without appreciable errors in P1 and u1).

(b) the temperature difference across the stack is much less
than the mean stack temperature so that the dependence of the
thermophysical parameters of the gas on the temperature, and
thus on x, can be neglected inside the stack.

Using Eq. (9), we can write for the volume flow rate at the
entrance of the stack

U1 = Aresu1 = iAresu0 (10)

Ares being the cross sectional area of the resonator. Eq. (6) can
be integrated over the cross section of a pore to obtain U1 within
the stack

U1 = As

y0

y0∫
0

u1(y)dy = iAs

ωρm

dP1

dx
(1 − fν) (11)

where

fν = tanh[(1 + i)y0/δν] (12)
[(1 + i)y0/δν]
and where As is the cross sectional area of the stack open to
gas flow. By imposing now continuity of volume flow rate at
the entrance of the stack, Eqs. (10) and (11) can be equated to
find dP1/dx just inside and, by approximation, along the stack

dP1

dx
= u0

Ω

ρmω

(1 − fν)
(13)

where the blockage ratio Ω = As/Ares = 1/(1 + l/y0) de-
scribes the porosity of the stack.

Substituting now Eqs. (8) and (13) into Eqs. (5) and (6) and
these last in Eq. (4), the following expression is found, at second
order in the acoustic oscillation amplitude, for ḣx :

ḣx = 1

2Ω
Im

[
(1 − h̃ν)(1 − hκ)

(1 − f̃ν)

]
P0u0

− cP ρm

2ωΩ2(1 − Pr)

dTm

dx
Im

[
(1 − hκ)(1 − h̃ν)

|1 − fν |2
]
u2

0 (14)

Note that for a given stack location (xs) in the resonator, all
quantities in this equation may be assumed independent of the
axial coordinate x within the stack except Tm; quantities en-
closed in square brackets, on the other hand, depend only on
the y coordinate reflecting the transverse variation of u1 and T1.
Eq. (14) is reasonably accurate in the central regions of the
stack pore where the energy flux is expected to be strictly uni-
directional (along x), the net heat transfer between fluid and
plate being zero. At the pore ends, however, where the mean
temperature field becomes y-dependent, its validity is question-
able because it was derived from Eq. (5), which is solution of
the heat transport equation involving a y-independent Tm. Ap-
plication of Eq. (14) in regions near the pore ends constitutes
therefore an approximation which is expected to be valid as
long as significant transverse temperature gradients do not de-
velop within the stack, namely, at low acoustic Mach numbers.
The same assumption, on the other hand, has been successfully
applied in [17] to derive a differential equation for the time-
averaged gas temperature. From a analytical point of view, this
approximation lets in Eq. (14) Tm and its derivative dTm/dx to
be both x and y dependent. Thus, in the following we rewrite
Eq. (14) in the form

ḣx(x, y) = ḣα(y) − ∂Tm(x, y)

∂x
ḣβ(y) (15)

where

ḣα(y) = 1

2Ω
Im

[
(1 − h̃ν)(1 − hκ)

(1 − f̃ν)

]
P0u0 (16)

and

ḣβ(y) = cP ρm

2ωΩ2(1 − Pr)
Im

[
(1 − hκ)(1 − h̃ν)

|1 − fν |2
]
u2

0 (17)

are both real and positive quantities.
The energy flux density along the axial direction comprises

also the diffusive term −K∂Tm/∂x (K being the thermal con-
ductivity of the gas). This contribution is generally considered
to be negligible in comparison to the hydrodynamic-one [17]
and therefore will be here neglected.
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On the opposite hand, the transverse component of the en-
ergy flux density contains, by hypothesis, only the diffusive
term

q̇y = −K
∂Tm

∂y
(18)

where q̇y is the time-averaged heat flux density along the trans-
verse direction. This assumption is certainly valid near the plate
surface where the fluid is at rest. Within the linear theory, how-
ever, it may be considered reasonable also in regions far from
the plate surface. Being in fact ∂/∂x ∼ 1/λ and ∂/∂y ∼ 1/δκ ,
the velocity in the y direction is of order δκ/λ smaller than u1.
This entails, as verified in [28], that the hydrodynamic heat
fluxes along the y direction are very small compared to the
diffusive-ones.

Since a x-dependent derivative ∂Tm/∂x, and thus a x-
variable ḣx along the stack, implies net heat deposition into
and/or extraction out of the solid plates, Eqs. (15) and (18) must
be related to the analogues in the solid walls. If Ks is the ther-
mal conductivity of the plate material, the time-averaged heat
flux densities along the x and y directions are simply

q̇x = −Ks

∂Tsm

∂x
, q̇y = −Ks

∂Tsm

∂y
(19)

after taking into account that thermal conduction is the unique
mechanism of energy transport inside the stack plates and that,
being by hypothesis cs � cp , the solid temperature oscillations
are negligible.

3. Numerical model

The simulation model system is a thermally isolated stack
of parallel plates, of length Ls located at position xs in a half-
wavelength gas filled resonator sustaining a standing acoustic
wave as shown in Fig. 1 (excluding the heat-exchangers). As
a stack is usually constituted by a set of identical plates, cal-
culations were performed in a single channel of the stack, i.e.
between a single pair of parallel plates. The simulation domain
is further reduced by symmetry from half a gas duct to half a
plate and is indicated in Fig. 2 by the light grey area together
with the coordinate system used. The axis parallel to the plates
is the x axis; x = 0 is chosen to be the beginning of the stack on
the left. The y axis is perpendicular to the stack-plates; y = 0 is
chosen to be the midpoint between the two adjacent plates.

The calculation of the steady-state two-dimensional time-
averaged temperature distribution was performed using a finite
difference methodology. To this end, the computational domain
was subdivided using a rectangular grid. In the x direction the
computation mesh size, �x, was typically 0.0041Ls while in
the y direction the computation mesh size, �y, was typically
0.02y0. The set of finite-difference equations for the unknown
quantities Tm(x, y) and Tsm(x, y) was then derived imposing
energy balance at each nodal point of the computational grid
making use of Eqs. (15) and (18) for the x and y components
of the energy flux density in the gas and of Eqs. (19) for the
analogues in the solid. Temperature spatial gradients were dis-
cretized using first order nodal temperature differences. As an
Fig. 1. Schematic illustration of a thermoacoustic refrigerator.

Fig. 2. Magnified region of two stack plates. The light grey areas indicate the
computation domain and the control volume about a generic nodal point.

example, for a nodal point laying in the gas region of the simu-
lation domain (see Fig. 2) the resulting equation is:

K
�x

�y
T

i−1,j
m + ḣβ

�y

�x
T

i,j−1
m +

(
−2ḣβ

�y

�x
− 2K

�x

�y

)
T

i,j
m

+ ḣβ

�y

�x
T

i,j+1
m + K

�x

�y
T

i+1,j
m = 0 (20)

which is Eq. (2) applied to the control volume about node (i, j).
Analogue equations yield for nodal points laying in the plate,
while to derive the system-equations for nodal points laying on
boundary lines, symmetry lines and on the gas-plate interface
line, the following boundary conditions were imposed:

• nodal lines at y = 0 and y = y0 + l are symmetry lines so

(
∂Tm

∂y

)
y=0

= 0,

(
∂Tsm

∂y

)
y=y0+l

= 0 (21)

• continuity conditions at the fluid–solid interface (y = y0)

entail that the time-averaged temperature of the gas cor-
responds to the plate temperature and that the energy flux
leaving (or entering) the gas equals that entering (or leav-
ing) the solid wall

Tm(y = y0) = Tsm(y = y0)

K

(
∂Tm

∂y

)
y=y0

= KS

(
∂Tsm

∂y

)
y=y0

(22)
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• for a thermally isolated stack no heat may leave or enter
the stack diffusively across the plates terminations (y0 �
y � y0 + l)(

∂Tsm

∂x

)
x=0

= 0,

(
∂Tsm

∂x

)
x=Ls

= 0 (23)

• for a thermally isolated stack no energy may leave or enter
the stack hydrodynamically across the pore ends (0 � y <

y0)

ḣx(x = 0) = 0, ḣx(x = Ls) = 0 (24)

Note that the above condition was judged too strong by the au-
thor of [17] who, alternatively, suggested (and applied) the re-
quirement that the axial temperature gradient should be uniform
at the pore-end and approaches the constant value for which the
integral of ḣx over the section vanishes. Even if this weaker
condition allows for recirculating energy fluxes at the pore ter-
minations (both positive and negative energy fluxes crossing the
end section can simultaneously exist being their sum zero), it
introduces a discontinuity in the axial temperature gradient at
the gas–solid interface; as here the fluid comes to rest and ther-
mal conduction becomes the predominant mechanism of energy
transport, it could expected that, at approaching the fluid–solid
interface ∂Tm/∂x tends to vanish, so matching the zero gradient
which is found at the plate terminations according to (22) and
(23). As it will be shown in Section 4, this is indeed the case
if conditions (24) are applied, even if this does not constitute a
proof for preferring these conditions respect to the weaker-ones.

The elements of the coefficient matrix associated to the re-
sultant system of linear algebraic equations were calculated us-
ing a code developed by the authors in FORTRAN-77 language
and the system was solved using a LU decomposition with par-
tial pivoting and row interchanges matrix factorization routine.
The latter was taken from the LAPACK library routines avail-
able online at [29]. Details about accuracy, computation cost,
etc. can be found in [29]. Once the time-averaged temperature
distribution is known, it can be substituted in Eqs. (15), (18) and
(19) to determine the energy flux distributions along the x and
y directions both in the gas and in the plate. Numerical calcula-
tions were carried out varying PA, y0 and l (half thickness of a
plate). The parameters of different runs are listed in Table 1.

4. Results and discussion

The transverse component of the energy flux density at the
gas–solid interface (y = y0) for parameters corresponding to
run 1 in Table 1 is shown in Fig. 3. These operating condi-
tions where chosen to facilitate the comparison with the test
cases of Cao et al. [11] (run 2) and of Ishikawa and Mee [14]
(run 7), although the values of the parameters l and Ks have
been arbitrarily selected as in these works plate thickness and
material have not been modeled (this is further discussed later
in this section). Perfectly according to the results obtained by
these authors, q̇y exhibits a sharp peak near the plate extremities
letting suppose in these regions a net heat exchange between
fluid and solid takes place. In particular, the maximum value of
q̇y is reached when the plate edges are approached: q̇y,max =
|q̇y(x = 0, y = y0)| = |q̇y(x = Ls, y = y0)|. This result is fur-
ther confirmed by the time-averaged temperature distribution
illustrated in Fig. 4 for the same run. In the central regions of
both the plate and the pore the temperature is nearly uniform
over a cross section (isotherms are vertical). As approaching
the pore ends, however, the isotherms become closer while their
profile results even more curved and practically horizontal at
the gas–solid interface. This trend is compatible with a growing
transverse temperature gradient ∂Tm/∂y near the pore ends, so
most of the heat transfer between the gas and the plate should
be localized in these regions. The monotonic increase of q̇y at
approaching the end section can be interpreted analyzing the
cross-sectional distribution of the temperature gradient ∂Tm/∂x

illustrated in Fig. 5 for run 2. As a consequence of the ther-

Fig. 3. Time-averaged heat flux density in the y direction at the plate surface
(y = y0) as a function of the position along the plate. Solid line is the heat flux
density profile computed using the present model (run 1). Open triangles are
numerical data from Ref. [11] (run 2). Open circles are numerical data from
Ref. [14] (run 7).
Table 1
Parameters of selected simulations

Run y0
[m]

l

[m]
Ls

[m]
xs

[m]
PA

[Pa]
λ

[m]
f

[Hz]
Ks

[W K−1 m−1]

1 0.008 0.002 0.25 1.13 170 10.08 100 100
2 0.0047 0.001 0.1 1.8 250 10.08 100 10
3 0.0012–0.0094 0.003 0.25 1.8 200 10.08 100 10
4 0.005 0.003 0.09 1.8 200 10.08 100 10
5 0.00076 0.000095 0.00685 0.04–0.42 2270 1.665 696 5.763
6 0.00055 0.0003 0.07 0.02–0.42 152 1.72 190 0.13

In runs 1–4 test gas is helium at Pm = 10 kPa. In run 5 test gas is helium at Pm = 114.1 kPa. In run 6 test gas is air at Pm = 101.325 kPa. In all cases Tm = 300 K.
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Fig. 4. Time-averaged temperature distribution in half a gas channel and half a
solid plate near the left hand edge of the simulated thermally isolated stack for
run 1. Temperature of the median isotherm (x = Ls/2) has been arbitrarily set
to 300 K.

Fig. 5. Transverse distribution (along the y-coordinate) of the longitudinal
time-averaged temperature gradient at selected distances from the pore end for
run 2. Solid line is a plot of the “end” temperature gradient for which ḣx (y) = 0
deduced from relation (14).

mal isolation boundary condition, in fact, as approaching the
pore end (x/Ls → 0) the temperature gradient tends towards
the “end” gradient, ∇TE(y), for which ḣx = 0. This is a well
defined function of the transverse coordinate y which can be
determined by equating relation (14) to zero. Energy balance
then forces q̇y to increase continuously to compensate for the
decrement of ḣx . It is interesting to observe that near the wall,
where the fluid is at rest, ∂Tm/∂x tends to vanish thus matching
the temperature gradient in the plate termination (not shown).
In the central regions of the pore, where end effects have no in-
fluence, the net heat flux into and out of the plate is zero and
the energy transport occurs parallel to the plate along the x

direction, as expressed by the standard thermoacoustic theory
through relation (14). This is evidenced in Fig. 6 where a good
matching is found between numerical (run 3) and analytical re-
sults for the axial component of the energy flux density (ḣx)

evaluated at the middle of the plate (x = Ls/2) for different
plate spacing.
Fig. 6. Transverse distribution (along the y coordinate) of the time-averaged
enthalpy flux density in the x direction at the centre of the plate. Solid lines are
analytical results of the standard thermoacoustic theory. Points are numerical
results of the present model (run 3).

Fig. 3 shows as the distance from the plate end over which
a net gas–solid heat transfer takes place is comparable to the
peak-to-peak particle displacement amplitude (2u1/ω); the de-
pendence of this heat-exchange length on acoustic amplitude,
plate spacing and Reynolds number has been investigated else-
where [30].

Numerical simulations performed at different plate thick-
ness, l, reveal that this parameter has no influence on the gas–
solid heat-exchange area (if its effect on blockage ratio is not
considered): starting from the simulation conditions specified
in run 1, the effect of varying l over a factor 10 keeping all the
other parameters constant was undetectable. The plate simply
serves as a duct which “closes” the energy flux path as imposed
by thermal isolation condition.

As expected, the magnitude of the transverse heat flux and
the gas–solid heat-exchange area were found to be an increasing
function of the plate material thermal conductivity Ks . Smaller
the mean temperature gradient in the plate (and in the gas),
in fact, greater the axial hydrodynamic energy flux. Anyway,
starting from parameter values specified in run 1, the effect of
varying Ks by a factor 103 keeping all the other parameters con-
stant was of about 1% on q̇y,max and even less on the gas–solid
heat-exchange area. So, run 1 should reproduce at a good level
of approximation the simulation conditions of Cao et al. [11]
and of Ishikawa and Mee [14].

Since the time-averaged transverse energy flux at the plate
surface is positive when entering the plate and negative when
leaving the plate, Fig. 3 implies that over the period of an
acoustic cycle, energy flows out of the left plate end (close to the
nearest velocity antinode), down hydrodynamically along the
thermal boundary layer in the gas and into the right plate end
(close to the nearest pressure antinode). Being the stack ther-
mally insulated, these energy flows are supplied by the plates
themselves, which thus cool at the end which supplies the en-
ergy (“cold” end) and heat at the other end which absorbs it
(“hot” end). In steady-state, the resulting temperature gradient
in the plate gives rise to a diffusive heat flow that perfectly
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Fig. 7. Time-averaged energy vector pattern for y0/δκ = 2.1 and l/δκ = 1.3
(run 4) in the whole computation domain.

Fig. 8. Time-averaged temperature difference across the stack as a function
of stack position in the resonator. Open circles are experimental data Atchley
et al. [23]. Full circles are experimental data of Piccolo and Cannistraro [24].
Short-dashed line and continuous line are theoretical predictions respectively
of Eq. (28) and of the present model (run 5) to reproduce the data of Atchley
et al. Dotted line and dashed line are theoretical predictions respectively of
Eq. (28) and of the present model (run 6) to reproduce the data of Piccolo and
Cannistraro. Numerical results of the present model are evaluated at the plate
centerline (y = y0 + l).

balances the hydrodynamic-one. The overall energy transfer
process is clearly displayed for run 4 in Fig. 7 where the time-
averaged energy vectors describe a closed “loop”.

This picture suggests that an effective model validation
can be made by comparing experimental measurements of the
steady-state temperature differences across the plates of ther-
mally isolated stacks (�T ) to the ones numerically computed.
In Fig. 8 this comparison is proposed making reference to
the experimental data of Atchley et al. [23] and of one of
the authors [24]. These data, referring to measurements of the
steady state acoustically generated temperature gradients in
short parallel-plate stacks without heat exchangers (referred as
ThermoAcoustic Couples—TACs) are most suitable for com-
parison with the present study. In particular, data from Fig. 9 of
[23] and from Fig. 4 of [24] have been reproduced here in Fig. 8
Fig. 9. Centerline time-averaged plate temperature as a function of position
along the plate. Solid line is the temperature profile computed using the present
model (run 5). Dashed line is the temperature variation predicted by the stan-
dard thermoacoustic theory.

(respectively open and full circles) and compared to the numer-
ical computations from this study for runs 5 (solid line) and 6
(dashed line) and to the theoretical predictions of the standard
thermoacoustic theory (dotted and short-dashed lines). It should
be noted that the temperature differences arising from the nu-
merical computations are taken along the centerline of the plate
(y = y0 + l) while those expected from the standard linear the-
ory are directly derived from Eq. (14) by setting a simple energy
balance equation. This last is easily obtained observing that in
the standard linear theory Tm is assumed y-independent so the
total enthalpy flux in half a channel is:

Ḣ =
y0∫

0

ḣx(y)dy = Ḣα − dTm

dx
Ḣβ (25)

where

Ḣα =
y0∫

0

ḣα(y)dy, Ḣβ =
y0∫

0

ḣβ(y)dy (26)

In steady-state this hydrodynamic energy flow must be balanced
by a diffusive-one flowing in the opposite direction both in the
gas and in the plate:(

Ḣα − dTm

dx
Ḣβ

)
−

(
Ky0

dTm

dx
+ Ksl

dTsm

dx

)
= 0 (27)

Observing now that dTm/dx = dTsm/dx and replacing dTm/dx

with �T/�x(dTm/dx is prescribed as constant by the standard
linear theory) the following formula is found for the tempera-
ture difference expected between the plate extremities:

�T = ḢαLs

Ky0 + KSl + Ḣβ

(28)

Fig. 8 shows that the deviation between the experimental data
and the theoretical predictions of (28) is of about 172% for the
data of Atchley et al. and of about 109% for the other case.
These deviations decrease respectively to 94 and 99% if the
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simplified two-dimensional model proposed in the present work
is employed. The improved matching can be explained by ex-
amination of Fig. 9 where the mean temperature along the cen-
terline of the solid plate obtained by the present model for run
5 (continuous line) is plotted as a function of the plate length
with the stack held fixed at location kxs = 2.62 (almost mid-
way between pressure node and antinode). Also shown (dashed
line) is the temperature profile predicted by the standard theory
through Eq. (28). In the middle of the plate the centerline plate
temperature exhibits essentially a linear profile which closely
overlaps the one predicted by the standard theory. Approaching
the plate ends, however, the temperature profile results slightly
curved and gives rise to a smaller temperature difference �T

than that arising from a constant temperature gradient over the
whole plate length. These curvatures are an evidence of the tem-
perature stratification which originates near the ends of the plate
and which constitutes the driving force for the transverse heat
fluxes entering and leaving the plate near its edges. As the pro-
posed computation methodology relies on the standard linear
thermoacoustic theory (no extension or refinement is made) this
result suggests that the deviations found between linear theory
predictions and experimental data at low and moderate acoustic
Mach numbers, are not entirely due to non-linear effects but
that thermal effect localized at the stack edges may also play an
important role. Similar trends were observed by Worlikar et al.
[13] and, more recently, by Marx and Blanc-Bennon [31].

Finally, we report some observations on the results obtained
at high Mach numbers, when temperature gradients become rel-
evant. At sufficiently high acoustic pressures we observe in the
gas the appearance of regions where the direction of the energy
flow is reversed (from the “hot” to the “cold” end). This result
is not surprising and corresponds to the well-known fact that,
in dependence of the value of the mean axial temperature gra-
dient, a stack can be operated in the heat pump or in the prime
mover mode. In the inviscid case, the boundary between the two
operation regimes is clearly defined by the “critical” tempera-
ture gradient [1] but, in the presence of viscosity, the boundary
is less marked. In our case the effect is evident where ∂Tm/∂x

is over the local value of ∇TE(y).

5. Conclusions

The essential features of the time-averaged temperature and
heat flux density distributions near the edges of a thermally iso-
lated thermoacoustic stack are investigated through a simple
numerical calculus-scheme based on the classical linear ther-
moacoustic theory. The simulation results agree well with those
of other numerical computations available in literature. A net
heat exchange between the oscillating gas and the solid wall
occurs only near the stack edges at a distance from the ends
not exceeding the peak-to-peak particle displacement ampli-
tude. The non-uniformity of the distribution of the temperature
gradient at the plate ends is the main result presented here. This
thermal effect may play an important role as source of the de-
viations generally found between linear theory predictions and
experimental data at low and moderate Mach numbers.
In its current form, the model is expected to be valid when re-
stricted to situations where the classical solution for the ampli-
tude of the temperature oscillations T1 may be retained accurate
near the pore terminations. This should be reasonably verified
when transverse temperature gradients are weak, namely when
stacks are operated at low Mach number. This conclusion is
further enforced observing that the model, being based on the
equations of the standard linear theory, does not take into ac-
count for non-linear effects (presence of harmonics greater than
the fundamental) or turbulent oscillatory flow, vortex genera-
tion, jetting (which can become relevant near the stack edges).
These effects could generate transverse heat fluxes greater than
the ones obtained uniquely by thermal conduction so the other
key hypothesis on which the present model is based may be in-
validated.
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